
Internship Druva

Realization report

Milan Sterkens

Bachelor in Electronics-ICT

Graduation subject: Cloud & Cybersecurity

Year 2022-2023

Campus: Thomas More Geel

PREFACE

My internship was at the software company Druva in Letterkenny, Ireland. Formerly
called Cloudranger. It was acquired by Druva in 2018. The Cloudranger project offers
simple and scalable AWS backup & recovery. It is the main product under development
at the Letterkenny site.

The first weeks of the internship taught me a lot about how a modern software-
company operates and, specific to Cloudranger, how their cloud-environment works.

As a Cloud & Cybersecurity student, I made it my mission to tighten the gap between
developers and operations. keeping this in mind, I did a couple of things to improve the
company’s pipeline and keeping their secrets from leaking.

TABLE OF CONTENTS

Preface ... 2

Table of contents .. 2

List of abbreviations .. 3

Jest pipeline integration + Grafana dashboard .. 3

Plan of approach .. 3

The (Bash) script .. 4

Slack bot ... 4

Grafana ... 4

Implementation ... 5

The script .. 5

Slack bot ... 8

Grafana ... 9

Setting up .. 9

Creating a dashboard ... 10

Lambda function: Secrets & PII Obfuscation ... 12

Result .. 12

SAM template .. 13

Code explanation ... 14

Code structure ... 14

The main program .. 14

Modifications in detect-secrets .. 17

The PII filter class ... 18

Conclusion ... 23

Bibliography ... 24

LIST OF ABBREVIATIONS

AWS Amazon Web Services

S3 Simple Storage Service

NPM Node Package Manager

EC2 Elastic Compute Cloud

HTTP Hypertext Transfer Protocol

AMI Amazon Machine Image

HTML HyperText Markup Language

XML Extensible Markup Language

SSH Secure Socket Shell

Repo Repository

JEST PIPELINE INTEGRATION + GRAFANA DASHBOARD

The idea is to automatically do a Jest test for the repository
CloudRanger_app_2_processing during the Codebuild process so that a notification can
be displayed in a channel on Slack. The pipeline should fail if a unit test fails and/or if
the coverage percentage went down. The Slack message should contain links to the
reports and explain why the build failed. Additionally, we want to have a graphical
overview of the reports in Grafana.

This should eventually be applied to all repositories & environments so the code must
be flexible.

Plan of approach
My project consists of three major components:

1) Creating a bash script in the buildspec yaml file of our repository to format Jests
output and get clear information out of it. We also want the pipeline to stop if
test(s) fails and/or if the coverage went down.

2) Create a bot in Slack and make it act as a webhook.
3) Visualize data in Grafana.

The (Bash) script
The script will be implemented in the existing buildspec yaml file which is used to run a
build job in AWS CodePipeline.

When Jest is run in the pipeline, I want to save its reports in files to check if failures
occurred while the program was running and check the coverage percentages of the
code. We upload these reports in an S3 bucket with a directory named after the
repository the code originated from.

After deciding what kind of information I want to send, I will make a script that sends
that data to the Slack bot. It would be nice to put hyperlinks in the message to the
reports so that our developers can quickly find out what the reason is for their builds
failing.

In the end, we test to see if we got any errors from Jest. If this is true, we post the
notification and make the build pipeline stop. Another reason to stop the pipeline is
when the current coverage percentage is lower than the previous one. If no errors were
found, then the pipeline may proceed to build the code of our repository, and a
message is sent to Slack to notify all tests were successful.

Slack bot
I want to create a bot that has a webhook so I can post messages to it with the script. I
will create a new channel in Slack for the notifications.

Slack bots can also use different text formats which I might use to make it more
interactive.

Grafana
Grafana is one of the world’s most popular and flexible data visualization tools. It is
ideal for creating a simple, sensible dashboard of your data.

I was ordered to visualize the Jest reports and coverage in Grafana. The intention is to
create a single pane of glass for each code repository to track all kinds of data points.
Later on, other metrics for Snyk, NPM, SonarQube, and Jmeter will be added.

Here is a representation of what it should become:

Such a dashboard would be ideal for developers to get a brief understanding of what
their code repositories’ health looks like.

Implementation
This chapter will explain what the result looks like & works.

The script
This is the script that I’ve written in the buildspec.yml file. Note that this is just a piece
of the full script and is executed right after the installation phase which installs node
modules, environment variables, etc.

Explanation of script

Line number: Explanation

208: Run the unit tests and create coverage files for it. EXITCODE=$? Is used to ignore
an exit code that occurs when there are failures because we want to decide to exit the
Codebuild ourselves later in the script.

212-214: Predefine some variables to make the code more stable. Also, create a TIME
variable to create a unique identifier for the files that will be uploaded to the S3 bucket.

217: We count the number of failures reported in report.xml.

219-224: First, we copy the file previous-coverage-percentage.txt from the S3 bucket
to a local file. After this, we store the value of that file in a variable PREVIOUS-
COVERAGE-PERCENT-STATEMENTS. If the file didn’t exist in the bucket, we store a 0 in
that variable. Finally, we store the four different coverage percentages in variables with
matching names by doing text transformations in the index.html file of the coverage
generated by Jest.

226: We store the main coverage percentage (statements) in a coverage-
percentage.txt file so we can send it later to the S3 bucket and overwrite the previous-
coverage-percentage.txt within.

229-233: copies all the output generated from Jest to the S3 bucket. It also overwrites
all the *-latest files. These are used for Grafana to show the latest reports in the
dashboard.

236-238: URL variables are generated so they can be used later in the curl command to
post a message to Slack.

247: We install the math package bc in to do math operations with floating point
numbers. In our case, these are the coverage percentages that we’ll use for the
equations in our conditionals below.

250-271:

 First statement: If no failures were found AND the latest coverage percentage is
higher than the previous one, an HTTP post message will be sent to our
webhook which will show this message:

 Second statement: If one or more failures were found AND the latest coverage
percentage is higher than the previous one, an HTTP post message will be sent

to our webhook which will show this message:

 Third statement: If no failures were found AND the latest coverage percentage is
lower than the previous one, an HTTP post message will be sent to our webhook
which will show this message:

 Last statement: If one or more failures were found AND the latest coverage
percentage is lower than the previous one, an HTTP post message will be sent to
our webhook which will show this message:

Slack bot
Creating a bot in Slack was quite the easiest part of this task. After logging in to
api.slack.com, you can create a new “app”. You have the option to create one from
scratch or to use a template. I chose to create one from scratch.

After doing that you’ll be redirected to the app configuration page where you can
customize the bot to your willing.

At the incoming webhooks tab, you can enable “activate incoming webhooks” and
generate one at the bottom of the page. Choose the Slack channel where the bot
should post the messages. A webhook URL will look like this:

https://hooks.slack.com/services/T02abcd2L5/B04abcdeS2DV/
Babcd3rYMbmXIgrabcdefgEEVzNV

I used such an URL to post the Slack messages with the curl command.

Grafana
It was very straightforward to set up Grafana on an ec2 instance. It surprised me how
easy it was to parse single files using the Infinity plugin.

Setting up
First, I launched an Amazon Linux instance with a security group that allows port 22 for
SSH access and port 3000 for the Grafana portal. Then, I connected to it via SSH using
the key I specified during setup.

I didn’t use APT to install Grafana since Amazon Linux AMI comes with the YUM
package manager. Before installing the package, I had to add the Grafana repository to
its source list. After that, I could install the open-source version of Grafana using the
following command:

sudo yum update && sudo yum install grafana –y

https://hooks.slack.com/services/T02abcd2L5/B04abcdeS2DV/Babcd3rYMbmXIgrabcdefgEEVzNV
https://hooks.slack.com/services/T02abcd2L5/B04abcdeS2DV/Babcd3rYMbmXIgrabcdefgEEVzNV

Note: If we want to switch to the enterprise version, we just substitute grafana to
grafana-enterprise in the command.

I used the Grafana Infinity datasource plugin to parse different file formats like XML
and HTML and use them as data points. It can be installed like this:

grafana-cli plugins install yesoreyeram-infinity-datasource && sudo systemctl restart
grafana

After installation, I could surf to the Grafana portal on http://<ip-adres>:3000, log in
using the username admin and password admin, and change the password for
something safer.

Creating a dashboard
Before creating a dashboard, I had to tell Grafana to use the Infinity plugin as a
datasource. I did this by hovering over the gear icon (bottom left) and clicking on the
datasources link. Then I came to the datasources page where I could add the Infinity
plugin.

After clicking on the four squares on the left, I could create my first dashboard. There I
created two panels to show the Jest report statistics and a panel to show the coverage
summary. I made the dashboard more dynamic by adding a repository and stage
variable which you can change by clicking on it. The variables will change the query
location to a different folder in the S3 bucket we created for our reports.

The first panel shows a bar chart using the latest coverage percentages of the chosen
repository folder. These are the query settings to get the data out of the coverage
report. I am parsing the file $repo/jest-coverage-latest/index.html:

As you can see, we select the different percentages using HTML selectors.

The second panel is more a summary of successful tests vs failures. These are the
query settings to get the data out of the report from $repo/jest-report-latest.xml:

We use ”$.” in our parsing selectors because it is used to retrieve the XML attributes for
the root element we declared on the left.

The third panel is a more detailed version of the second panel. It shows the numbers
for all testsuites separately. These are the query settings to get the data out of the
report from $repo/jest-report-latest.xml:

Same thing as the second panel but going one level deeper to the testsuite level as
root.

LAMBDA FUNCTION: SECRETS & PII OBFUSCATION

My assignment was to create a Lambda function that detects and obfuscates secrets
and Personal Identifiable Information in each string. This function will filter a query that
originates from a chatbot in Slack. This document explains how it works.

Result
Input in AWS:

=

Output:

SAM template
template.yml deploys a Lambda function with 1024MB of memory which was the best
size for running the code.

Code explanation

Code structure
 The main program in main.py
 A slightly modified version of the detect-secrets GitHub repository
 A Python class PIIFilter.py

https://github.com/Yelp/detect-secrets

The main program
The first four lines of code import the necessary libraries and classes including detect-
secrets and PII filter classes.

After that, we create objects of those classes and initialize the piifilter.

Then, the function lambda_handler is declared which will be executed when the Lambda
function is invoked. In that function, two booleans called found_secret and found_pii
are declared. These are used later to tell if we detected secrets or PII in the query the
program will inspect. We save that query in a variable called prompt which is passed to
event[‘prompt’] when invoking the Lambda function.

Because the detect-secrets library doesn’t support scanning string variables, but does
support scanning files, the query is stored in /tmp/text.txt and scanned with detect-
secrets’ scan_file() method.

Then, the filter() method of PIIClass is used to obfuscate personal identifiable
information of the prompt string and is put in a new response variable. After that, the

boolean found_pii is set to True if the method found something.

Now, if detect-secrets found any secrets in /tmp/text.txt, it will set found_secret to
True and replace the secrets with a replacement value which is given in the json output
of detect-secrets’ json() method. This replacement value is part of the modification I
did to the detect-secrets library.

Finally, we jsonify the response, found_secret, and found_pii together and return it in
the body of the Lambda response.

Complete code:

Modifications in detect-secrets
The json() method we used in the main program outputted a json which included a
replacement value. This value did not exist in the first place, so some modifications
were necessary to potential_secret.py of the detect-secrets library.

I used a match statement to add a replacement_value attribute to the attributes
dictionary with a value based on the secret type. I marked my additions in yellow
below.

json() method in potential_secret.py:

The PII filter class
I tried to use the Scrubadub Python package in the first place, but this was impossible
due to the heavy dependency requirements which made the package larger than
300MB. Since Lambda functions cannot be larger than 250MB, I decided to create my
own Python class which should work just as well as Scrubadub, if not even better. In
this chapter, I explain the methods of the class.

These three methods are used to replace phone numbers from Irish, U.S., and Indian
phone numbers with a placeholder <PHONE>. The methods use regex to detect phone
numbers. These methods are used in the filter() method.

This method is used to replace timestamps to a placeholder <TIME>. It also uses regex
to detect it and is used in the filter() method.

This method is used to replace dates to a placeholder <DATE>. It also uses regex to
detect it and is used in the filter() method.

This method is used to replace email-adresses to a placeholder <EMAIL>. It also uses
regex to detect it and is used in the filter() method.

This method is used to replace urls to a placeholder <URL>. It also uses regex to
detect it and is used in the filter() method.

This method is used to replace postal codes to a placeholder <POSTCODE>. It also
uses regex to detect it and is used in the filter() method.

This method is used to remove accents.

The filter() method applies the previous methods. So you can choose those you want to
be applied.

Complete PIIFilter.py class:

CONCLUSION

I feel like I made a difference at Druva. The unit test integration is going to be
implemented in all their repositories and the Lambda function is also running in
production. I think that it makes the life of the developers easier & safer. It was also
nice to be able to help another intern and that I could help my other colleages on
certain tasks.

I learned a lot about AWS in general. During my internship, I had the opportunity to
use AWS courses on Udemy to learn more about the different services they offer. The
Codebuild part took most of my time with the Dash script for the buildspec file. The
funny thing is that I thought that the Amazon Linux AMI image used Bash. Apparently,
it uses Dash which meant I had to rewrite the script to be POSIX compliant.

BIBLIOGRAPHY

THE GRAFANA DOCS: HTTPS://GRAFANA.COM/DOCS/GRAFANA/LATEST/
SLACK DOCS: HTTPS://API.SLACK.COM/DOCS
AWS DOCS: HTTPS://DOCS.AWS.AMAZON.COM/
Detect-secrets Github: https://github.com/Yelp/detect-secrets

https://github.com/Yelp/detect-secrets
https://docs.aws.amazon.com/
https://api.slack.com/docs
https://grafana.com/docs/grafana/latest/

	Preface
	Table of contents
	List of abbreviations
	Jest pipeline integration + Grafana dashboard
	Plan of approach
	The (Bash) script
	Slack bot
	Grafana

	Implementation
	The script
	Slack bot
	Grafana
	Setting up
	Creating a dashboard

	Lambda function: Secrets & PII Obfuscation
	Result
	SAM template
	Code explanation
	Code structure
	The main program
	Modifications in detect-secrets
	The PII filter class

	Conclusion
	Bibliography

